Building automation - intelligently networking building operation

All commercial buildings are now built with automatic building controls. Heating, light, air conditioning, cooling, shade control and door and window technology are networked,and communicate with each other. The components can be controlled conveniently, centrally and with little contact using intelligent building management systems.

Objectives: Energy efficiency, comfort and safety

It is not only cars that will drive themselves in the future: buildings are also becoming increasingly automated. They automatically regulate heating, ventilation and air conditioning themselves. They switch lighting to right level depending on the external brightness and whether there are people present in the room. They raise or lower blinds, and open and close windows and doors. And they do all this while responding precisely to users’ or residents’ needs as they pass through the building. When they leave the building, energy consumption is automatically reduced to a minimum, accesses are locked and the alarm system is activated.

This type of automation technology is now installed in all new public buildings and commercial properties. It can also be used to optimise existing properties. The key phrase is definitely building automation. Automation means any action not performed by a human that affects a device or system. Building automation (BA) refers to the sum of equipment used for automatic control, regulation, monitoring and optimisation in buildings.

This means that all the sensors, actuators, operating elements, consumers and other technical units in the building are networked. Building automation then automatically performs specific functional processes as part of the building technology, in accordance with the prescribed settings. Technical building equipment, which can often be complex, is therefore efficiently and centrally managed. The goal is to make building operations more energy-efficient, economical and safer, and to offer maximum comfort to users and residents.

Structure of the building automation in accordance with DIN EN ISO 16484

The management level monitors the system and optimises its operation using special software - a building management system. The software visualises and saves information and data.

The automation level handles the collation and evaluation of information. Switch and positioning commands are sent back to field level. However., they can also be transferred to all of the other levels in the command level.

The field level involves the execution of all functions and measurement and reporting of data. This data comes from sensors (for example temperature sensors, air quality sensors, luminosity sensors, movement detectors, window contacts, wind speed sensors, rainfall sensors) and actuators (servo motors for valves and flaps, switch and dimming equipment for the lighting, drives for sun shades, windows and doors) and other push buttons and switches.

To transfer information from the sensors or positioning commands to actuators, the devices need to be linked in a shared network.

EU Regulation on the overall energy efficiency of buildings

The EU regulation on the overall energy efficiency of buildings is the driver behind building automation. After all, 40 per cent of total energy consumption within the EU is within the building sector. According to the EU regulation, the overall energy performance of all buildings needs to be improved. This is primarily dependent on the thermal envelope and the nature of the technical building equipment. The facilities can also be further improved by installation of an automation system.

A study at the Biberach University of Applied Sciences ('Ensuring energy efficiency via building automation with respect to DIN V 18599 and DIN EN 15232') examined how much energy the individual functions in a building automation system can save. Among the study results, it was found that automated lighting in combination with a light-directing external blind produced a savings potential of around 40 per cent. If investment costs and savings are compared, the result is an average amortisation time of two to ten years for building automation systems.

In summary, the study identified that building automation could make a big contribution to the energy efficiency of a building. It has therefore been scientifically confirmed that normal user behaviour often leads to unnecessarily high energy consumption.

Automation as an 'ideal' user

'Ideal' users would need to turn the heating off when they ventilate rooms, and then close windows as quickly as possibly again. Additionally, they would turn lights on only if the room is being used, and then use only the number of lights needed. In unused rooms, and usually at night or on public holidays, they would noticeably decrease the air temperature in offices.

Since these types of ideal users are very rare – indeed non-ideal users forget about open windows and leave them open overnight - this gap can be significantly closed with the help of building automation. Smart Buildings therefore behave in a more energy-efficient way than people.

Automated ventilation for better indoor air and greater hygiene

Building automation can improve not only energy efficiency, but indoor air quality too. This is because smart window systems that are networked with the building management system enable automated, natural ventilation. This allows rooms to be ventilated as needed and supplied with fresh air – completely contactlessly thanks to smart window automation. This avoids physical contact and thus the possibility of transmitting germs and viruses. A further advantage: regular air exchange improves indoor air quality – this is good for concentration and reduces the concentration of aerosols, thus also reducing the risk of infection from viruses.

Smart Building and Smart Home

A Smart Home helps to save costs. Professional initial installation in a two bedroom home costs between 800 and 4,000 euro - with a potential energy saving of around 20 per cent.

Smart home technologies are a growing market. © GEZE GmbH

Smart Building systems are not only used in office and industry buildings, hotels or hospitals. There is also growing interest in automation technology for homes. ‘Smart Homes’ are those where the power supply and consumption controls are networked with household devices and lighting.

Home networks with entertainment electronics, monitoring and safety systems, blinds, window and door closer systems can also be connected. These functions can be adapted to the individual needs of users and therefore ensure increased comfort. They also help to save costs and to save on resources.

Find out more about Smart Building

What is BACnet?

BACnet stands for Building Automation and Control networks. It was developed in 1995 under the auspices of the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) as a higher-order protocol in building automation. BACnet has been documented in ISO 16484 Part 5 since 2003.

What is so special about BACnet?

The aim of BACnet was to create a manufacturer-independent communication protocol for intelligent components and systems in building automation applications. This means that BACnet allows automation components from different manufacturers to exchange information with each other without incurring license fees for special data transfer hardware.

How is BACnet used?

BACnet is used when many different actuators and components from different manufacturers are to be linked in a network via one protocol. 

The prerequisite for interoperability between devices from different manufacturers are the BIBBs defined in ISO standard 16484-5. BIBB stands for BACnet Interoperability Building Block and defines the needs that must be met to use the BACnet protocol.

Good to know: All supported BIBBs, object types, character sets and communication options are stated in the PICS (Protocol Implementation Conformance Statement) documents for each device.

Go to the GEZE network solutions with BACnet and KNX

There are more than 180 GEZE door solutions in the new headquarters of the Stuttgart IT company Vector. They are networked into the BACnet building management system using IO 420 interface modules.

The entrance doors of the Vector company headquarters in Stuttgart © Jürgen Pollak / GEZE GmbH

Intelligent building control in the new Vector company headquarters

GEZE network solutions with BACnet are creating significant advantages in planning and operation:

  • customised digital networking solutions with BACnet
  • central control of more than 180 doors in the building management system – even greater comfort and safety in normal operation, and in the event of danger
  • interdisciplinary functionality and interaction – visible any time and from anywhere
  • Energy efficiency: interaction between the door technology and climate control
  • support during the construction phase: Communication between product group experts

Go to the GEZE Vector IT campus case study

Successful integration: building automation with GEZE Cockpit in the Cologne GAG headquarters

At the GAG headquarters in Cologne, GEZE Cockpit with BACnet ensures smart networking with the Priva building management system – and therefore greater efficiency, safety and comfort.

Go to the GEZE reference project for the GAG headquarters

GEZE Cockpit building automation system

Infographic of the various components of the GEZE Cockpit building automation system

The GEZE Cockpit building automation system connects all the smart components of the door, window and safety technology

GEZE Cockpit is the first building automation system for smart door, window and safety technology. The GEZE Cockpit building automation system allows automated system components from the fields of door, window and safety technology from GEZE and other manufacturers to be networked, centrally controlled and precisely monitored. BACnet, the most widespread communication standard in building automation, enables interoperability. GEZE Cockpit can be used as an independent building management system, or be integrated into a higher-ranking building automation system.

The hardware components of the building control system comprise an embedded system, on which three different GEZE software packages with different performance functionalities can be installed. Data exchange between the GEZE Cockpit and products is handled via the IO 420 interface module on the BACnet open communication protocol. Whether you use a PC, tablet, or smartphone: the applications for GEZE Cockpit are browser-based and can therefore be operated on every IP-capable device.

Go to the GEZE Cockpit building automation system

Go to the GEZE Cockpit brochure (PDF | 3.14 MB)

Comprehensive support for all the experts involved

GEZE supports all the experts involved in every aspect of planning for multifunctional windows and doors.

Architects, metal workers, safety planners, fire protection experts and electrical installations and system integrators must be included in the planning as early as possible to guarantee that the individual systems can interact properly while maximising the benefits. Standardised networking components and customised project support from GEZE promise everyone concerned planning reliability.

Smooth and interdisciplinary action

The BACnet open communication protocol enables smooth and interdisciplinary operations. It offers plug & play components, allowing you to connect devices and products Quickly. This helps the systems to interact, guarantees quick integration into the communication system and assures the flexibility needed, even in case of last minute changes in planning.

GEZE provides assistance with maintenance, support and training

GEZE Cockpit enables the operators of a building to make significant financial savings while at the same time improving the safety of the building and the people inside it. Employees benefit too: GEZE Cockpit is easy and comfortable to use: the status of doors, windows, smoke and heat extraction, and escape route systems can be conveniently controlled and securely monitored from anywhere and at any time, using any IP-capable device.